美高代數(shù)一和幾何的內(nèi)容感覺困惑。希望老師解答。謝謝。
看課程介紹代數(shù)一內(nèi)容,
athematicians in this course will build upon prior knowledge of linear functions to extend algebraic problem solving to quadratic and exponentialrelationships. Students will engage in methods for analyzing, solving, and modeling with these functions. Students will graph and interpret characteristics offunctions and solve both algebraically and graphically. Students will reason with equations and inequalities, with a focus on modeling. This course willinclude a study of descriptive statistics during which students will display numerical data and summarize it using measures of center and variability. TheGAISE model will support students as they interpret the results in a real-world context. A TI-84+ calculator is recommended for this course.
代數(shù)一對二次函數(shù)和指數(shù)函數(shù)要求多高?需要達到國內(nèi)體制內(nèi)的初三和高一的水平嗎?
幾何是這樣介紹的
Mathematicians in this course will explore complex geometric situations and deepen their explanations of geometric relationships moving towards formal
mathematical arguments. This course builds on congruence and similarity concepts introduced in previous courses. Students develop their understanding
and use of proof, both formal and informal. Students focus learning in trigonometry, circles, and connecting coordinates to both algebra and geometry
concepts. Students further develop concepts in probability, expanding their ability to compute and interpret theoretical and experimental probabilities. A
compass and protractor are required for this course and a TI-84+ calculator is recommended.
關(guān)于三角函數(shù)部分。體制內(nèi)的初三的三角函數(shù)部分達到要求了嗎?更麻煩的是, 感覺涉及到解析幾何內(nèi)容了。這個要求多高?
后續(xù)的代數(shù)二是這樣介紹的。
Building on their work with linear, quadratic, and exponential functions from Algebra 1, mathematicians in this course extend their repertoire of functions toinclude polynomial, rational, radical, and logarithmic functions and transformations of each of these. Students work closely with the expressions that definethe functions, and continue to expand and hone their abilities to model situations and to solve equations, including solving quadratic equations over the setof complex numbers and solving exponential equations using logarithms. Additionally, students extend their knowledge of trigonometry and its applicationsbeyond right triangles and discover data gathering techniques, data distributions, and make inferences from data using the GAISE framework. A graphingcalculator is required
-
家長您好:
讓我針對您提出的問題逐一解答:
1. 代數(shù)一的二次函數(shù)和指數(shù)函數(shù)內(nèi)容:
美國高中的代數(shù)一課程對二次函數(shù)和指數(shù)函數(shù)的要求一般不會超過中國初三和高一的水平。學(xué)生需要掌握這兩類函數(shù)的圖像特征,了解它們的代數(shù)性質(zhì),并能夠解決一些實際應(yīng)用問題。但難度和深度可能不及中國高中數(shù)學(xué)??偟膩碚f,如果學(xué)生已經(jīng)扎實掌握了初三和高一的相關(guān)內(nèi)容,那么學(xué)習(xí)美高代數(shù)一應(yīng)該不會有太大困難。
2. 幾何課程中的三角函數(shù)內(nèi)容:
中國初三數(shù)學(xué)中的三角函數(shù)部分主要涉及銳角三角函數(shù)的定義、特殊角的三角函數(shù)值以及簡單的應(yīng)用。這部分內(nèi)容一般能夠滿足美高幾何課程對三角函數(shù)的基本要求。美高幾何可能會涉及一些更加復(fù)雜的三角函數(shù)應(yīng)用,如傾斜測量、三角形面積計算等,但總體難度不會超出中國高中數(shù)學(xué)的范疇。
3. 幾何課程中的解析幾何內(nèi)容:
解析幾何是將代數(shù)方法引入幾何問題的一個分支,主要研究平面圖形的坐標(biāo)表示和性質(zhì)。中國高中數(shù)學(xué)中涉及的解析幾何內(nèi)容相對比較豐富,包括直線、圓、橢圓、雙曲線、拋物線等。美高幾何中的解析幾何內(nèi)容可能不會那么全面和深入,主要集中在直線和圓的坐標(biāo)表示、方程性質(zhì)以及一些簡單的綜合應(yīng)用。如果學(xué)生已經(jīng)學(xué)習(xí)過中國高中的解析幾何,那么美高幾何的相關(guān)內(nèi)容應(yīng)該不會造成太大挑戰(zhàn)。
4. 代數(shù)二的內(nèi)容:
代數(shù)二是在代數(shù)一的基礎(chǔ)上,進一步拓展函數(shù)類型和運算能力。多項式函數(shù)、分式函數(shù)、根式函數(shù)、對數(shù)函數(shù)等是代數(shù)二的重點內(nèi)容。此外,代數(shù)二還會深化學(xué)生對復(fù)數(shù)、三角函數(shù)、數(shù)據(jù)分析等方面的理解和應(yīng)用??偟膩碚f,代數(shù)二的內(nèi)容相當(dāng)于中國高中數(shù)學(xué)必修四和必修五的大部分內(nèi)容,難度和深度相當(dāng)。學(xué)生如果已經(jīng)掌握了高中數(shù)學(xué)的基本內(nèi)容,那么學(xué)習(xí)代數(shù)二應(yīng)該不會遇到太大的困難。
需要注意的是,美國高中數(shù)學(xué)的教學(xué)進度和深度安排與中國高中有所不同。美高數(shù)學(xué)更加強調(diào)概念理解、實際應(yīng)用和數(shù)學(xué)建模,而中國高中數(shù)學(xué)更加重視系統(tǒng)性、嚴密性和技巧性。因此,即使學(xué)生已經(jīng)學(xué)過了相關(guān)內(nèi)容,在學(xué)習(xí)美高數(shù)學(xué)時也需要適應(yīng)不同的教學(xué)方式和要求。同時,數(shù)學(xué)學(xué)習(xí)是一個不斷積累和提高的過程,打好基礎(chǔ)、多加練習(xí)是取得好成績的關(guān)鍵。相信只要您的孩子認真對待,勤奮刻苦,一定能夠很好地完成美高的數(shù)學(xué)課程,為今后的學(xué)習(xí)和發(fā)展奠定堅實的基礎(chǔ)。
如果還有任何其它問題的話,歡迎聯(lián)系我。
-
我在美國高中教過所有的數(shù)學(xué)課程,有二十余年一線教學(xué)經(jīng)歷。個人認為:
1)代數(shù)一對二次函數(shù)和指數(shù)函數(shù)要求不高,主要是因式分解,簡單的計算和畫圖。
2)幾何課遠沒有國內(nèi)學(xué)的深, 可能會包括一點點解析幾何內(nèi)容,主要是直線,圓的方程。所以,讀完國內(nèi)的初三能夠跳過幾何課最好。
3)代數(shù)二中的三角函數(shù)部分要求不高,國內(nèi)初三的內(nèi)容應(yīng)該全包括了。但這也取決于學(xué)校,如果用經(jīng)典(Brown)的代數(shù)2教材,可以講到三角函數(shù)的和差化積,虛數(shù)等內(nèi)容。